Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563086

RESUMO

The objective of this work was to evaluate the combination of synthetic peptides based on the γ-core motif of defensin PvD1 with amphotericin B (AmB) at different concentrations against Candida albicans. We applied the checkerboard assay using different concentrations of the commercial drug AmB and the synthetic peptides γ31-45PvD1++ and γ33-41PvD1++ against C. albicans, aiming to find combinations with synergistic interactions. Between these two interactions involving γ31-45PvD1++ and AmB, an additive effect was observed. One such interaction occurred at concentrations of 0.009 µM of peptide γ31-45PvD1++ and 13.23 µM of AmB and another condition of 0.019 µM of peptide γ31-45PvD1++ and 6.61 µM of AmB. The other two concentrations of the interaction showed a synergistic effect in the combination of synthetic peptide γ31-45PvD1++ and AmB, where the concentrations were 1.40 µM peptide γ31-45PvD1++ and 0.004 µM AmB and 0.70 µM γ31-45PvD1++ peptide and 0.002 µM AmB. We proceeded with analysis of the mechanism of action involving synergistic effects. This examination unveiled a range of impactful outcomes, including the impairment of mitochondrial functionality, compromise of cell wall integrity, DNA degradation, and a consequential decline in cell viability. We also observed that both synergistic combinations were capable of causing damage to the plasma membrane and cell wall, causing leakage of intracellular components. This discovery demonstrates for the first time that the synergistic combinations found between the synthetic peptide γ31-45PvD1++ and AmB have an antifungal effect against C. albicans, acting on the integrity of the plasma membrane and cell wall.


Assuntos
Anfotericina B , Candida albicans , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Peptídeos/farmacologia , Membrana Celular , Parede Celular , Testes de Sensibilidade Microbiana
2.
Probiotics Antimicrob Proteins ; 15(5): 1124-1136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841476

RESUMO

The objective of this work was to purify and evaluate the antifungal potential of peptides present in immature and ripe fruits of Capsicum chinense Jacq. (accession UENF 1706) on the medical importance yeasts. Initially the proteins of these seedless fruits were extracted, precipitated with ammonium sulfate at 70% saturation, followed by heating at 80 °C. Subsequently, the peptide-rich extract was fractionated by DEAE-Sepharose anion exchange. The whole process was monitored by tricine-SDS-PAGE. The results revealed that the fraction retained in anion exchange column, called D2, of immature and ripe fruits significantly inhibit the growth of Candida albicans and C. tropicalis yeasts. Due to the higher yield, the D2 fraction of immature fruits was selected for further purification by reverse phase chromatography on HPLC, where sixteen different fractions (H1-H16) were obtained and these were subjected to antifungal assay at 50 µg mL-1. Although almost all fractions tested had significant growth inhibition, the HI9 fraction inhibit 99% of the two yeasts tested. The effect of treatment with HI3, HI8, HI9, and HI14 fractions on the viability of yeast cells was analyzed due to their strong growth inhibition. We observed that only 50 µg mL-1 of the HI9 fraction is the lethal dose for 100% of the cells of C. albicans and C. tropicalis in the original assay. Although the HI9 fraction had a fungicidal effect on both tested yeasts, we only observed membrane permeabilization for C. tropicalis cells treated with 50 µg mL-1 of this fraction. Through mass spectrometry, we identified that the 6 kDa peptide band of HI9 fraction showed similarity with antimicrobial peptides belonging to the plant defensin family.


Assuntos
Capsicum , Frutas , Frutas/química , Candida , Antifúngicos/química , Capsicum/química , Sequência de Aminoácidos , Peptídeos/química , Leveduras
3.
Nanoscale ; 11(48): 23366-23381, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31793603

RESUMO

One of the most important causes of failure in tumour treatment is the development of resistance to therapy. Cancer cells can develop the ability to lose sensitivity to anti-neoplastic drugs during reciprocal crosstalk between cells and their interaction with the tumour microenvironment (TME). Cell-to-cell communication regulates a cascade of interdependent events essential for disease development and progression and can be mediated by several signalling pathways. Exosome-mediated communication is one of the pathways regulating these events. Tumour-derived exosomes (TDE) are believed to have the ability to modulate TMEs and participate in multidrug resistance mechanisms. In this work, we studied the effect of the natural defensin from common bean, PvD1, on the formation of exosomes by breast cancer MCF-7 cells, mainly the modulatory effect it has on the level of CD63 and CD9 tetraspanins. Moreover, we followed the interaction of PvD1 with biological and model membranes of selected composition, by biophysical and imaging techniques. Overall, the results show that PvD1 induces a dual effect on MCF-7 derived exosomes: the peptide attenuates the recruitment of CD63 and CD9 to exosomes intracellularly and binds to the mature exosomes in the extracellular environment. This work uncovers the exosome-mediated anticancer action of PvD1, a potential nutraceutical agent.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Defensinas/farmacologia , Exossomos/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Neoplasias da Mama/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Exossomos/metabolismo , Feminino , Humanos , Células MCF-7 , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo
4.
Biosci Rep ; 38(2)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29599127

RESUMO

CaThi is a thionin-like peptide isolated from fruits of Capsicum annuum, which has strong antimicrobial activity against bacteria, yeasts and filamentous fungi, and induced reactive oxygen species (ROS) in fungi. ROS are molecules that appear in the early stages of programmed cell death or apoptosis in fungi. Due to this fact, in this work we analyzed some events that may be related to process of apoptosis on yeast induced by CaThi. To investigate this possibility, we evaluated phosphatidylserine (PS) externalization, presence of active caspases and the ability of CaThi to bind to DNA in Candida tropicalis cells. Additionally, we investigated mitochondrial membrane potential, cell surface pH, and extracellular H+ fluxes in C. tropicalis cells after treatment with CaThi. Our results showed that CaThi induced PS externalization in the outer leaflet of the cell membrane, activation of caspases, and it had the ability for DNA binding and to dissipate mitochondrial membrane potential. In addition, the cell surface pH increased significantly when the C. tropicalis cells were exposed to CaThi which corroborates with ~96% inhibition on extracellular H+ efflux. Taking together, these data suggest that this peptide is capable of promoting an imbalance in pH homeostasis during yeast cell death playing a modulatory role in the H+ transport systems. In conclusion, our results strongly indicated that CaThi triggers apoptosis in C. tropicalis cells, involving a pH signaling mechanism.


Assuntos
Apoptose/efeitos dos fármacos , Capsicum/química , Caspases/metabolismo , Frutas/química , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Peptídeos/química , Proteínas de Plantas/química , Espécies Reativas de Oxigênio/metabolismo
5.
Nanoscale ; 9(43): 16887-16899, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29076508

RESUMO

Metastatic breast cancer is a very serious life threatening condition that poses many challenges for the pharmaceutical development of effective chemotherapeutics. As the therapeutics targeted to the localized masses in breast improve, metastatic lesions in the brain slowly increase in their incidence compromising successful treatment outcomes overall. The blood-brain-barrier (BBB) is one important obstacle for the management of breast cancer brain metastases. New therapeutic approaches are in demand for overcoming the BBB's breaching by breast tumor cells. In this work we demonstrate the potential dual role of a natural antimicrobial plant defensin, PvD1: it interferes with the formation of solid tumors in the breast and concomitantly controls adhesion of breast cancer cells to human brain endothelial cells. We have used a combination of techniques that probe PvD1's effect at the single cell level and reveal that this peptide can effectively damage breast tumor cells, leaving healthy breast and brain cells unaffected. Results suggest that PvD1 quickly internalizes in cancer cells but remains located in the membrane of normal cells with no significant damage to its structure and biomechanical properties. These interactions in turn modulate cell adhesiveness between tumor and BBB cells. PvD1 is a potential template for the design of innovative pharmacological approaches for metastatic breast cancer treatment: the manipulation of the biomechanical properties of tumor cells that ultimately prevent their attachment to the BBB.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Neoplasias da Mama/patologia , Defensinas/uso terapêutico , Proteínas de Plantas/uso terapêutico , Encéfalo/citologia , Mama/citologia , Linhagem Celular Tumoral , Humanos , Microscopia de Força Atômica , Phaseolus , Análise de Célula Única
6.
Biosci Rep ; 35(5)2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26285803

RESUMO

Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.


Assuntos
Antiprotozoários/farmacologia , Defensinas/farmacologia , Leishmania/citologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Antiprotozoários/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Defensinas/química , Humanos , Leishmaniose/parasitologia , Phaseolus/química
7.
Biopolymers ; 102(4): 335-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817604

RESUMO

The objective of this study was to isolate antimicrobial peptides from Capsicum baccatum seeds and evaluate their antimicrobial activity and inhibitory effects against α-amylase. Initially, proteins from the flour of C. baccatum seeds were extracted in sodium phosphate buffer, pH 5.4, and precipitated with ammonium sulfate at 90% saturation. The D1 and D2 fractions were subjected to antifungal tests against the yeasts Saccharomyces cerevisiae, Candida albicans, Candida tropicalis, and Kluyveromyces marxiannus, and tested against α-amylases from Callosobruchus maculates and human saliva. The D2 fraction presented higher antimicrobial activity and was subjected to further purification and seven new different fractions (H1-H7) were obtained. Peptides in the H4 fraction were sequenced and the N-terminal sequences revealed homology with previously reported storage vicilins from seeds. The H4 fraction exhibited strong antifungal activity and also promoted morphological changes in yeast, including pseudohyphae formation. All fractions, including H4, inhibited mammalian α-amylase activity but only the H4 fraction was able to inhibit C. maculatus α-amylase activity. These results suggest that the fractions isolated from the seeds of C. baccatum can act directly in plant defenses against pathogens and insects.


Assuntos
Antifúngicos/farmacologia , Capsicum/química , Peptídeos/farmacologia , Proteínas de Armazenamento de Sementes/farmacologia , Sementes/química , Leveduras/efeitos dos fármacos , alfa-Amilases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Antifúngicos/isolamento & purificação , Cromatografia por Troca Iônica , Inibidores Enzimáticos/farmacologia , Humanos , Insetos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Micologia , Peptídeos/química , Peptídeos/isolamento & purificação , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/isolamento & purificação , Alinhamento de Sequência , Leveduras/crescimento & desenvolvimento , alfa-Amilases/metabolismo
8.
BMC Biochem ; 15: 7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24690228

RESUMO

BACKGROUND: Defensins are basic, cysteine-rich antimicrobial peptides that are important components of plant defense against pathogens. Previously, we isolated a defensin, PvD1, from Phaseolus vulgaris L. (common bean) seeds. RESULTS: The aim of this study was to overexpress PvD1 in a prokaryotic system, verify the biologic function of recombinant PvD1 (PvD1r) by comparing the antimicrobial activity of PvD1r to that of the natural defensin, PvD1, and use a mutant Candida albicans strain that lacks the gene for sphingolipid biosynthesis to unravel the target site of the PvD1r in C. albicans cells. The cDNA encoding PvD1, which was previously obtained, was cloned into the pET-32 EK/LIC vector, and the resulting construct was used to transform bacterial cells (Rosetta Gami 2 (DE3) pLysS) leading to recombinant protein expression. After expression had been induced, PvD1r was purified, cleaved with enterokinase and repurified by chromatographic steps. N-terminal amino acid sequencing showed that the overall process of the recombinant production of PvD1r, including cleavage with the enterokinase, was successful. Additionally, modeling revealed that PvD1r had a structure that was similar to the defensin isolated from plants. Purified PvD1 and PvD1r possessed inhibitory activity against the growth of the wild-type pathogenic yeast strain C. albicans. Both defensins, however, did not present inhibitory activity against the mutant strain of C. albicans. Antifungal assays with the wild-type C. albicans strains showed morphological changes upon observation by light microscopy following growth assays. PvD1r was coupled to FITC, and the subsequent treatment of wild type C. albicans with DAPI revealed that the labeled peptide was intracellularly localized. In the mutant strain, no intracellular labeling was detected. CONCLUSION: Our results indicate that PvD1r retains full biological activity after recombinant production, enterokinase cleavage and purification. Additionally, our results from the antimicrobial assay, the microscopic analysis and the PvD1r-FITC labeling assays corroborate each other and lead us to suggest that the target of PvD1 in C. albicans cells is the sphingolipid glucosylceramide.


Assuntos
Antifúngicos/metabolismo , Defensinas/metabolismo , Phaseolus/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Sequência de Bases , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Clonagem Molecular , Defensinas/química , Defensinas/genética , Expressão Gênica , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Sementes/metabolismo
9.
Biochim Biophys Acta ; 1830(6): 3509-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500079

RESUMO

BACKGROUND: The superfamily of glycine-rich proteins (GRPs) corresponds to a large and complex group of plant proteins that may be involved in many developmental and physiological processes such as RNA biogenesis, stress tolerance, pollen hydration and plant-pathogen interactions, showing defensive activity against fungi, bacteria and viruses. METHODS: In this study, the peptides from Coffea canephora seeds were extracted according to the methods of Egorov et al. (2005). The purified peptide was submitted for amino acid sequencing and antimicrobial activity measurement. RESULTS: The purified peptide with a molecular weight of 7kDa, named Cc-GRP, was observed to display homology to GRPs. The Cc-GRP-fungi interaction led to morphological changes and membrane permeability, including the formation of pseudohyphae, which were visualized with the aid of SYTOX green dye. Additionally, Cc-GRP also prevented colony formation by yeasts. Antifungal assays of Fusarium oxysporum and Colletotrichum lindemuthianum, observed by light microscopy, showed that the two molds exhibited morphological changes after the growth assay. Cc-GRP coupled to FITC and its subsequent treatment with DAPI revealed the presence of the peptide in the cell wall, cell surface and nucleus of F. oxysporum. CONCLUSIONS AND GENERAL SIGNIFICANCE: In this work we purified, characterized and evaluated the in vitro effect on fungi of a new peptide from coffee, named Cc-GRP, which is involved in the plant defense system against pathogens by acting through a membrane permeabilization mechanism and localized in the nuclei of fungal cells. We also showed, for the first time, the intracellular localization of Cc-GRP during antimicrobial assay.


Assuntos
Antifúngicos , Coffea/química , Fusarium/crescimento & desenvolvimento , Peptídeos , Sementes/química , Homologia de Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia
10.
Antonie Van Leeuwenhoek ; 101(3): 657-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160750

RESUMO

A 6,000 Da peptide, named CaTI, was isolated from Capsicum annuum L. seeds and showed potent inhibitory activity against trypsin and chymotrypsin. The aim of this study was to determine the effect of CaTI on Saccharomyces cerevisiae, Candida albicans, Candida tropicalis and Kluyveromyces marxiannus cells. We observed that CaTI inhibited the growth of S. cerevisiae, K. marxiannus as well as C. albicans and induced cellular agglomeration and the release of cytoplasmic content. No effect on growth was observed in C. tropicalis but morphological changes were noted. In the spot assay, different degrees of sensitivity were shown among the strains and concentrations tested. Scanning electron microscopy showed that S. cerevisiae, K. marxiannus and C. albicans, in the presence of CaTI, exhibited morphological alterations, such as the formation of pseudohyphae, cellular aggregates and elongated forms. We also show that CaTI induces the generation of nitric oxide and interferes in a dose-dependent manner with glucose-stimulated acidification of the medium mediated by H(+)-ATPase of S. cerevisiae cells.


Assuntos
Antifúngicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Capsicum/enzimologia , Kluyveromyces/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Inibidores da Tripsina/farmacologia , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/ultraestrutura , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/antagonistas & inibidores , Glucose/farmacologia , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Óxido Nítrico/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , ATPases Translocadoras de Prótons/antagonistas & inibidores , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação
11.
Biochim Biophys Acta ; 1810(4): 375-83, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21167915

RESUMO

BACKGROUND: A growing number of cysteine-rich antimicrobial peptides (AMPs) have been isolated from plants and particularly from seeds. It has become increasingly clear that these peptides, which include lipid transfer proteins (LTPs), play an important role in the protection of plants against microbial infection. METHODS: Peptides from Coffea canephora seeds were extracted in Tris-HCl buffer (pH 8.0), and chromatographic purification of LTP was performed by DEAE and reverse-phase HPLC. The purified peptide was submitted to amino acid sequence, antimicrobial activity and mammalian α-amylase inhibitory analyses. RESULTS: The purified peptide of 9kDa had homology to LTPs isolated from different plants. Bidimensional electrophoresis of the 9kDa band showed the presence of two isoforms with pIs of 8.0 and 8.5. Cc-LTP(1) exhibited strong antifungal activity, against Candida albicans, and also promoted morphological changes including the formation of pseudohyphae on Candida tropicalis, as revealed by electron micrograph. Our results show that Cc-LTP(1) interfered in a dose-dependent manner with glucose-stimulated, H(+)-ATPase-dependent acidification of yeast medium and that the peptide permeabilized yeast plasma membranes to the dye SYTOX green, as verified by fluorescence microscopy. Interestingly, we also showed for the first time that the well characterized LTP(1) family, represented here by Cc-LTP(1), was also able to inhibit mammalian α-amylase activity in vitro. CONCLUSIONS AND GENERAL SIGNIFICANCE: In this work we purified, characterized and evaluated the in vitro effect on yeast of a new peptide from coffee, named Cc-LPT1, which we also showed, for the first time, the ability to inhibit mammalian α-amylase activity.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Coffea/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , alfa-Amilases/antagonistas & inibidores , Sequência de Aminoácidos , Glucose/metabolismo , Humanos , Dados de Sequência Molecular , Sementes/química
12.
Peptides ; 29(12): 2090-100, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18786582

RESUMO

The PvD1 defensin was purified from Phaseolus vulgaris (cv. Pérola) seeds, basically as described by Terras et al. [Terras FRG, Schoofs HME, De Bolle MFC, Van Leuven F, Ress SB, Vanderleyden J, Cammue BPA, Broekaer TWF. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 1992;267(22):15301-9], with some modifications. A DEAE-Sepharose, equilibrated with 20mM Tris-HCl, pH 8.0, was initially utilized for the separation of peptides after ammonium sulfate fractionation. The basic fraction (the non-retained peak) obtained showed the presence of one unique band in SDS-Tricine gel electrophoresis with a molecular mass of approximately 6kDa. The purification of this peptide was confirmed after a reverse-phase chromatography in a C2/C18 column by HPLC, where once again only one peak was observed and denominated H1. H1 was submitted to N-terminal sequencing and the comparative analysis in databanks revealed high similarity with sequences of different defensins isolated from other plants species. The N-terminal sequence of the mature defensin isolated was used to produce a degenerated primer. This primer allowed the amplification of the defensin cDNA by RT-PCR from mRNA of P. vulgaris seeds. The sequence analysis of the cloned cDNA, named PVD1, demonstrated 314bp encoding a polypeptide of 47 amino acids. The deduced peptide presented high similarity with plant defensins of Vigna unguiculata (93%), Cicer arietinum (95%) and Pachyrhizus erosus (87%). PvD1 inhibited the growth of the yeasts, Candida albicans, Candida parapsilosis, Candida tropicalis, Candida guilliermondii, Kluyveromyces marxiannus and Saccharomyces cerevisiae. PvD1 also presented an inhibitory activity against the growth of phytopathogenic fungi including Fusarium oxysporum, Fusarium solani, Fusarium lateritium and Rizoctonia solani.


Assuntos
Antifúngicos/isolamento & purificação , DNA Complementar/metabolismo , Defensinas/farmacologia , Phaseolus/química , Sementes/química , Sequência de Aminoácidos , Antifúngicos/farmacologia , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , DNA Complementar/isolamento & purificação , Defensinas/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Leveduras/efeitos dos fármacos
13.
Toxicon ; 50(5): 600-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17572465

RESUMO

Different types of antimicrobial peptides have been identified in seeds from different plant species. The aim of this study was to isolate and characterize peptides present in chilli pepper seeds (Capsicum annuum L.) and evaluate their toxic activities against some yeast species. Initially, proteins from seed flour were extracted in phosphate buffer, pH 5.4, for 3 h at 4 degrees C and the pellet obtained at 90% saturation with ammonium sulfate was heated at 80 degrees C for 15 min. The resulting suspension was clarified by centrifugation and the supernatant was extensively dialyzed against water; the peptide-rich extract was then named F/0-90. Cation-exchange chromatography was performed to separate low molecular mass proteins. One of the resulting fractions, named F3, enriched with basic proteins of 6-16 kDa, was submitted to reverse-phase chromatography in a C2/C18 column by HPLC, resulting in four fractions denominated RP1, RP2, RP3 and RP4. When these fractions were submitted to N-terminal sequencing, the comparative analysis in databanks revealed homology for two of these peptides, isolated from fractions RP3 and RP4, with sequences of proteinase inhibitors and 2S albumins, respectively. The F3 fraction, rich in peptides, inhibited the growth of yeasts Saccharomyces cerevisiae, Candida albicans, Candida parapsilosis, Candida tropicalis, Pichia membranifaciens, Kluyveromyces marxiannus and Candida guilliermondii. The RP3 and RP4 fractions showed high inhibitory activity against the growth of the yeast S. cerevisiae. The F3 fraction was also able to inhibit glucose-stimulated acidification of the medium by yeast cells of S. cerevisiae and to cause several morphological changes in different yeasts, such as cell wall disorganization, bud formation as well as the formation of pseudohyphae.


Assuntos
Antifúngicos/farmacologia , Capsicum/química , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Sementes/química , Leveduras/efeitos dos fármacos , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Fracionamento Químico , Cromatografia por Troca Iônica/métodos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Mapeamento de Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Alinhamento de Sequência , Leveduras/fisiologia , Leveduras/ultraestrutura
14.
Biochim Biophys Acta ; 1760(9): 1323-32, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16784815

RESUMO

During the last few years, a growing number of cysteine-rich antimicrobial peptides has been isolated from plants and particularly from seeds. It has become increasingly clear that these peptides play an important role in the protection of plants against microbial infection. In this work, proteins from chili pepper (Capsicum annuum L.) seeds were extracted in phosphate buffer, pH 5.4 and peptides purification were performed by employing ion-exchange chromatographies on DEAE, CM-Sepharose, Sephacryl S-100 and reverse phase in HPLC. Three peptide enriched fractions, namely F1, F2 and F3, were obtained after the CM-Sepharose chromatography. The F1 fraction, mainly composed of three peptides ranging from 6 to 10 kDa, was submitted to N-terminal amino acid sequencing. The closer to 10 kDa peptide showed high sequence homology to lipid transfer proteins (LTPs) previously isolated from others seeds. F1 fraction exhibited strong fungicidal activity against Candida albicans, Saccharomyces cerevisiae and Schizosaccharomyces pombe and also promoted several morphological changes to C. albicans, including the formation of pseudohyphae, as revealed by scanning electron micrography. F1 fraction also reduced the glucose stimulated acidification of the medium mediated by H(+)-ATPase of S. cerevisiae cells in a dose-dependent manner and caused the permeabilization of yeast plasma membrane to the dye SYTOX Green, as verified by confocal laser microscopy.


Assuntos
Antifúngicos/farmacologia , Capsicum/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Sementes/química , Leveduras/efeitos dos fármacos , Ácidos/química , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Proliferação de Células , Meios de Cultura , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Leveduras/citologia , Leveduras/metabolismo
15.
J Agric Food Chem ; 52(25): 7548-54, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15675802

RESUMO

This study starts by isolating and characterizing the first protein from Labramia bojeri seeds, which belong to the Sapotaceae family. The purified lectin analyzed by SDS-PAGE with and without beta-mercaptoethanol shows two protein bands (M(r) = 19 and 20 kDa), which cannot be resolved. Protein bands have shown similar characteristics as molecular masses, determined by gel filtration and native gel; N-terminal sequences presented a difference in their isoelectric points. We have suggested that those protein bands might be variants of the protein named Labramin. The sequence database search has shown that the N-terminal sequence of Labramin presented a high degree of homology to Kunitz-type trypsin inhibitor (82-52%) despite no trypsin inhibition activity detection. The lectin-like form from Labramin was better inhibited by glycoproteins and has also presented growth inhibition of the fungus Colletotrichum lindemuthianum and the yeast Saccharomyces cerevisiae, but it has not presented an apparent effect on Fusarium oxysporum.


Assuntos
Peptídeos/isolamento & purificação , Lectinas de Plantas/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Sapotaceae/química , Sementes/química , Animais , Eletroforese em Gel de Poliacrilamida , Fungicidas Industriais/farmacologia , Hemaglutinação , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/química , Lectinas de Plantas/química , Proteínas de Plantas/química
16.
Phytochemistry ; 61(3): 301-10, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12359516

RESUMO

A lectin was purified from the cotyledons of Luetzelburgia auriculata (Fr. All) Ducke by affinity chromatography on agarose-N-acetyl-D-galactosamine. The lectin is a potent agglutinin for rabbit erythrocytes, reacts with human red cells, but is inactive against cow, sheep, and goat erythrocytes. Hemagglutination of rabbit erythrocytes was inhibited by either 0.39 mM N-acetyl-neuraminic acid or N-acetyl-D-galactosamin, 12.5 mM D-lactose or D-melibiose, 50 mM D-galactose or raffinose. Its hemagglutinating activity was lost at 80 degrees C, 5 min, and the activation energy required for denaturation was 104.75 kJ mol(-1). Chromatography on Sephadex G-100, at pH 7.6, showed that at this hydrogenic ionic concentration the native lectin was a homotetramer (123.5 kDa). By denaturing SDS-PAGE, LAA seemed to be composed of a mixture of 29 and 15 kDa polypeptide subunits. At acidic and basic pHs it assumed different conformations, as demonstrated by exclusion chromatography on Superdex 200 HR 10/30. The N-terminal sequence of the 29 kDa band was SEVVSFSFTKFNPNQKDII and the 15 kDa band contained a mixture of SEVVSFSFTKFNPNQKDII and KFNQIVAVEEDTDXESQPQ sequences, indicating that these bands may represent full-length and its endogenous fragments, respectively. The lectin is a glycoprotein having 3.2% neutral carbohydrate, with a pI of 5.8, containing high levels of Asp+Asn and Glu+Gln and hydroxy amino acids, and low amount or absence of sulfur amino acids. Its absorption spectrum showed a maximum at 280 nm and a epsilon (1%) x (1cm) of 5.2. Its CD spectrum was characterized by minima near 228 nm, maxima near 196 nm and a negative to positive crossover at 210 nm. The secondary structure content was 6% alpha-helix, 8% parallel beta-sheet, 38% antiparallel beta-sheet, 17% beta-turn, 31% unordered and others contribution, and 1% RMS (root mean square). In the fluorescence spectroscopy, excitation of the lectin solution at 280 nm gave an emission spectrum in the 285-445 nm range. The wavelength maximum emission was in 334.5 nm, typical for tryptophan residues buried inside the protein.


Assuntos
Fabaceae/química , Lectinas/química , Lectinas/isolamento & purificação , Sequência de Aminoácidos , Aminoácidos/análise , Carboidratos/análise , Cromatografia por Troca Iônica , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Hemaglutinação , Temperatura Alta , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Lectinas/metabolismo , Dados de Sequência Molecular , Peso Molecular , Análise de Sequência de Proteína
17.
Arq. biol. tecnol ; 40(2): 413-8, jun.1997. tab
Artigo em Inglês | LILACS | ID: lil-240746

RESUMO

The presence of inhibitors of alfa-amylases from several sources (bacterial, plant, insect and mammallian) was investigated in seeds of several food legumes. No inhibitor of any of the tested enzymes was found in Phaseolus lunatus (Lima bean) seeds while the presence of inhibitors of insect (bruchid), porcine pancreas and human saliva alfa-amylases was confirmed in the seeds of P. vulgaris (common bean). Glycine max (soybean) seeds showed alfa-als for all the tested enzymes except for the porcine pancreatic amylase. Although we have found low levels of alfa-als in both bruchid-susceptible and resistant cowpea (Vigna unguiculata) seeds their presence does not correlate with the resistance shown by the seeds of some cultivars to the cowpea weevil Callosobruchus maculatus. The results reported here suggest that alfa-Als are not involved in the resistance of seeds of some cowpea lines to C. maculatus and that variant vicilins, the 7 S storage proteins involved in this resistance, do not show any inhibitory towards bruchi alfa-amylases


Assuntos
alfa-Amilases , Enzimas , Fabaceae , Proteínas , Sementes , Glycine max
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA